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Compressed Domain Video Object Segmentation
Fatih Porikli, Senior Member, IEEE, Faisal Bashir, Member, IEEE, and Huifang Sun

Abstract— We present a compressed domain video object
segmentation method for the MPEG encoded video sequences.
For a fraction of the raw domain analysis, compressed domain
segmentation provides the essential a priori information to
many vision tasks from surveillance to transcoding that require
fast processing of large volumes of data where pixel-resolution
boundary extraction is not required. Our method generates
accurate segmentation maps in block resolution at hierarchically
varying object levels, which empowers application to determine
the most pertinent partition of images. It exploits the block
structure of the compressed video to minimize the amount of
data to be processed. All the available motion flow within a
group of pictures is projected onto a single layer, which also
consists of the frequency decomposition of color pattern. Then,
by starting from the blocks where the spatial energy is small,
it expands homogeneous regions while automatically adapting
local similarity criteria. We also formulate an alternative solution
that applies a kernel-based clustering where separate spatial,
transform, and motion kernels are used to establish the affinity.
We show that both region expansion and mean shift produce
similar results as the computationally expensive raw domain
segmentation. Finally, a binary clustering iteratively merges the
most similar regions to generate a hierarchical partition tree.

Index Terms— Compressed domain segmentation, mean-shift
analysis, MPEG video, volume growing.

I. INTRODUCTION

A. Motivation

V IDEO OBJECT segmentation, i.e., the detection of the
constitutive parts of video frames, is conventionally

performed in the spatial color domain, called raw data [1]–[5].
Since no motion information is readily available in raw data,
the underlying flow is estimated from a pair of consecutive
frames, often by employing block matching [6], [7], phase
correlation [8], or gradient based approaches [9], [10].

To achieve a proper segmentation, accurate flow dynamics is
required. Depending on the desired precision and resolution of
the motion vectors, extraction of these dynamics can be com-
putationally prohibitive. On the other hand, there is the chal-
lenge of processing incessantly growing amount of video data
streaming from all kind of sources with limited resources in
real time. To make things more complicated, any raw domain
analysis involves the additional cost of decoding, as almost all
video data is kept in a compressed format due to the storage
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space and transmission requirements. This inevitably brings
the dilemma of processing the massive amounts of video data
while maintaining an acceptable segmentation performance.

One favorable aspect of compressed video is that it
already contains coarse but potentially useful motion cues
encoded in its P-frames. Furthermore, the block structure
of the compressed domain data drastically condenses
the amount of data to be processed and reduces the
processing time. Considering aforementioned need for fast
yet competent solutions, it makes perfect sense to utilize
this available information to improve the following raw
domain segmentation. As a prior, a segmentation map that
is obtained in compressed domain can effectively initialize
regions in raw domain while supplying fundamentals such
as motion and texture distributions of those regions. In other
words, compressed domain segmentation can be imposed as
a preprocessing step to decrease the computational load of
the following stages. The importance of such priors becomes
more apparent in processing of large HD resolution videos.

In addition, many applications do not demand detection of
exact boundaries. For example, digital video recorders that
are integrated into recent surveillance systems are designed
to receive encoded streams from multiple network cameras
and expected to find the locations of moving objects in all
those streams in real time using the limited processing power
encased in low-end CPUs. Detection of object motion and
generation of backgrounds in the compressed domain effec-
tively reduces the computational load of the object detection
by filtering out the frames in which no object motion exists.
Performing detection in compressed video noticeably relieves
these systems.

Another application that benefits from compressed domain
segmentation is video transcoding where the regions of interest
have usually 8 × 8 block resolution. Since the segmentation
is used to generate the object layers, it suffices to operate on
the approximate boundaries. By applying compressed domain
segmentation, transcoding from a frame-based coding schema
to object-based schema is significantly accelerated. Com-
pressed domain segmentation also enables efficient generation
of video object descriptions to access visual information with
the MPEG-7 standardization effort [16].

In this paper we propose a system to extract the object-
based and global features from the compressed MPEG video
using the motion vector information for video retrieval.

B. Background

Important as it is, video object segmentation (a survey is
given in [5]) is proven to be one of the most challenging tasks
in computer vision. It aims to fuse different modalities, i.e.,
color, texture, and motion, to bridge the semantic gap between
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the numerical information and the human perception. It has
several important applications from indexing and retrieval to
event detection.

In contrast to the large amount of effort spent on raw
domain, only recently has compressed domain analysis gained
attention [11]–[15], [18] thanks to the multimedia revolution
proliferating down to handheld devices.

In this paper, we consider the MPEG compression scheme
which converts a bit stream in terms of I (intra-compressed),
P (forward predicted), and B (bi-directional predicted) frames.
An I-frame is encoded as a single image, with no reference
to any past or future frames. It stores the discrete cosine
transform (DCT) information of the original frame. The DCT
separates the signal into independent frequency bands. All
I-frames are divided into 16 × 16 pixel macroblocks. Each
macroblock consists of four 8 × 8 luminance (Y) blocks
and two 8 × 8 chrominance (U, V) blocks. The P- and
B-frames store the motion information and residues after
motion compensation. The goal of motion compensation is
to provide an approximate prediction for the macroblock.
Motion-compensated prediction assumes that the current pic-
ture can be locally modeled as a translation of the pictures
of some previous time. A P-macroblock is encoded as a
16× 16 area of the past reference frame, plus an error term.
The sequence of different frame types is called the group
of pictures (GOP) structure. There are many possible I-, P-,
B-frame arrangements. Since B-frames are interpolated from
the remaining frames, we leave them out of our segmentation
method.

Accompanying the motion, the MPEG compressed video
embodies spatial information. For instance, the DCT coeffi-
cients carry image texture and gradient attributes. Block-based
representation forms data in a block-resolution condensed
space, which significantly expedites any processing. For cer-
tain applications, it is also computationally more convenient
to process data in the compressed domain rather than decom-
pressing it and then working on the raw domain.

It is worth mentioning that the compressed domain has
intrinsic limitations. The DCT removes the spatial correlation
of pixels within a block, and thus the precision of the segmen-
tation degrades by the block dimension. The MPEG standard
specifies how to represent the motion information; however,
it does not specify how such vectors are to be computed.
Many implementations use block-matching techniques, where
the motion vector is obtained by minimizing a cost function
measuring the mismatch between the reference and the current
block. Thus, MPEG motion vectors do not necessarily corre-
spond to the true motion but the best matching of macroblocks.

Some compressed domain segmentation algorithms are con-
centrated on the spatial DCT coefficients. Wang et al. [23]
segment faces where skin-tone statistics, shape constraints,
and energy distribution of the luminance DCT coefficients are
utilized to locate faces. De Queiroz et al. [19] partition JPEG
images into specific regions such as those containing halftones,
text, and continuous tone using an encoding cost map based
on DCT coefficients.

As opposed to the DCT only approaches, Babu and
Ramakrishnan [15], [16] aggregate motion vectors (MVs)

Fig. 1. Flow diagram of the volume growth-based compressed domain
segmentation.

to segment the data. Similarly, Mezaris et al. [17] exploit
the motion information to find spatiotemporal objects. Their
method rejects motion vectors deviating from the single
rigid plane assumption. As a result, certain blocks of the
current frame are selected as a possible foreground regions.
The selected blocks are filtered out in case they cannot be
tracked to the previous frame. Remaining blocks are simply
clustered to connected regions. Sukmarg and Rao [22] detect
background and foreground regions using region segmentation
followed by adaptive k-means clustering where the motion of a
single P-frame is used and the remaining P-frames are omitted.
Their results show that the preset thresholds in clustering
impose a careful tuning of importance weights for different
cues. A confidence measure-based moving object extraction
method is proposed by Zhang et al. [23]. Their method
introduces several confidence measures to help motion layer
separation, and depends on a global motion compensation to
differentiate layers. Ji and Park [20] track dynamic regions
based on the DCT coefficient similarity and a binary classi-
fication constrained on block motion. As a shortcoming, this
method requires initialization of individual regions.

C. Proposed Method

Based on the above observations, we present an automatic
segmentation method that takes advantage of the embedded
information available in compressed video and exploits the
block and GOP structure to further accelerate the computa-
tional performance.

A functional flow diagram of the presented method is given
in Fig. 1. After parsing the MPEG video into the DCT coeffi-
cients and MVs, we construct a multidimensional frequency-
temporal (FT) data structure using not one but multiple GOPs
between two scene cuts. Each GOP is restructured into a layer
of feature vectors corresponding to grid of blocks. Each vector
consists of a subset of dc coefficients, terms corresponding to
various aspects of ac coefficients, and a set of accumulated
forward-pointing motion vectors.
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We achieve initial segmentation using two alternative solu-
tions. The first method expand volumes within the FT data
structure by starting from recursively derived seed points. The
volume expansion marks the consistent and connected parts
of video across each frame and across multiple frames. The
seed points are selected from the points that have minimum
local energy within their local neighborhood, which improves
the likelihood of generating larger segments, and thus the
consistency of final results.

The second method clusters the FT blocks in multiple
kernels of spatial, motion, and frequency domains. For each
point in the FT data, the iteration of the kernels enables us
to find a sink point. The points converged to the same sink
points constitute a segment. A nice property of the multikernel
mean-shift method is that the similarity criteria are implicitly
embedded into the algorithm, and thus it does not require
fine tuning of the parameters. Since kernel size imposes a
constraint on the granularity of the segmentation results, we
use kernels to extract the minimum possible regions while
preventing from oversegmentation. We present a comparison
of these two solutions.

As a final stage, we iteratively merge the similar volumes
using their descriptors to obtain a hierarchical object partition
tree. At each iteration, we update the volume descriptors that
consists motion and DCT-based terms. We tested different
combination of these terms as well. We use a divergence score
to assess the quality of the segmentation results at each level
of the partition tree. Our experiments confirm the robustness
of this score. After segmenting the FT data, we propagate the
segmentation result to P- and B-frames.

Our method gives block accurate object boundaries. This
information is essential in applications, which was explained
in the previous section.

D. Main Contributions

Computational superiority is the main advantage of the
proposed algorithm. As opposed to the existing approaches,
our method processes a multitude of GOPs at the same time.
Thus, it has significantly low computational load, which makes
it ideal for processing of large volumes of streaming data with
limited resources. The adapted block structure helps to reduce
the computational load further by compacting data almost 360
times (Section II-B).

Given the unique properties of compressed domain data,
this paper presents two advanced solutions for robust segmen-
tation; using volume growth, and using mean-shift in FT data.
Volume growth enables efficient propagation of intra-frame
information to inter-frame segmentation. Multiple kernels in
both I-frame DCT coefficients and P-frame motion vectors
are used for kernel density gradient estimation in the spirit of
mean-shift algorithm [25].

Another important advantage of the described solutions is
that they adapt to the given data. Thus, we achieve robust
segmentation with no cumbersome fine tuning of the para-
meters. Furthermore, we address the problem of extracting a
representative motion vector for an I-frame block given the
motion vectors of the individual P-frames. Toward this end, we
propose motion accumulation of every block over all P-frames.

Fig. 2. Parsing requiring only constructing the DCT coefficients and motion
vectors without IDCT and motion compensation.

In the following sections, we describe the details of the FT
data structure, volume expansion, segmentation by kernels, and
hierarchical merging to obtain a partition tree.

II. FREQUENCY-TEMPORAL DATA

A. Parsing MPEG Video

Unlike the traditional parsers, we do not fully decode video
down to the raw frames but only draw out the DCT coefficients
Ct

i jmn and MVs mtk
mn = [mxtk

mn, mytk
mn]T where m, n are the

macroblock indices, i, j are within-block indices, t is time,
i.e., the corresponding GOP, and k is the order of P-frame in
its GOP. The parsing components and other modules required
to fully decode the MPEG video are shown in Fig. 2. As can
be seen, we first chop the binary bitstream into bytes. At this
point, all the DCT coefficients are in quantized format. Thus,
we apply inverse quantization to find the integer-valued DCT
coefficients. We reconstruct the scan lines of macroblocks by
reshuffling the DCT coefficients. We obtain the MVs after
variable length decoding.

The parsing process is computationally much simpler than
the full decoding of MPEG video, which requires application
of inverse DCT and motion compensation stages. On average,
the parsing takes 3–10% of the decoding time (similar results
have also reported in [21]) for a GOP. In our experiments, it
takes approximately 0.5 ms to parse a GOP on a P4, 3-GHz
CPU.

B. Frequency-Temporal Data Structure

After we parse the data, we assemble the DCT coefficients
of I-frames and MVs of multiple P-frames in a GOP into a
single layer of FT data. This data structure consists of multiple
GOPs of a video shot. The visual content, i.e., the number of
objects and their appearances, is assumed to remain consistent
within the video shot.

Each element of the FT corresponds to a feature vector
f (t, m, n) that represents the attributes of a macroblock. Vec-
tors that belong to the same GOP constitute a temporal layer.
A feature vector consists of the dc parameters CtY

00 , CtU
00 , Ct V

00
of the I-frame for all Y, U, V channels, a reduced set of the ac
parameters CtY

i j where i �= j for Y-channel, a spatial energy
term β, and the accompanying forward-predicted MVs at

mn
obtained from the P-frames. CtY

00 represents the mean color
and CtY

i j ’s indicate spatial texture.
The dc and ac components only exist for the I-frame. CtY

00
represents the mean color of the block, and thus it can be



PORIKLI et al.: COMPRESSED DOMAIN VIDEO OBJECT SEGMENTATION 5

Fig. 3. Decoded I-frame and its corresponding layers in the frequency-
temporal data.

considered as a pixel of the subsampled I-frame by a factor
of 8 as shown in Fig. 3. Note that, not all the color channels
are encoded in the same precision. Chrominance channels have
half the resolution of the luminance channel due to the fact that
human visual perception is more sensitive to the luminance
variance. The DCT transform of an M × M image block is
defined as

Cij = 2

M

M∑
x=1

M∑
y=1

I (x, y) cos
π i(2x + 1)

2M
cos

π j (2y + 1)

2M

(1)
where i and j are the horizontal and vertical frequencies
(i, j = 1, . . . , M), and I (x, y) is a pixel. In the regular MPEG
syntax, the block size is M = 8.

For a block in which the spatial texture is smooth, most of
the higher indexed DCT coefficients have lower values and
they reduce to zero after the quantization stage. Another key
observation is that the higher DCT coefficients are sensitive to
the pattern shifts. For instance, the spatially shifted versions of
the same pattern will have different higher order coefficients.
Since object movement will cause the shifted versions of
the same pattern between the I-frames, the higher order, i.e.,
i, j > 4, coefficients will be different. The higher order terms
are sensitive to speckle noise, which indicates that they are
not confident cues in segmentation. Thus, we utilize the lower
indexed DCT coefficients in the feature vector. To capture
horizontal and vertical variance in a block, we define Cx∗, Cy∗
using the luminance information as

Cx∗ =
K∑

i=2

CY
i1, Cy∗ =

K∑
j=2

CY
1 j (2)

where 1 < K ≤ M , e.g., K = 4 to not include high order
coefficients. For simplicity we dropped the time index. There
is no need to normalize these numbers since the block size is
constant. We tested the contribution of the diagonal variance.
We observed that the diagonal coefficients provide minimal
discriminating information mainly due to the fact that the
vertical and horizontal components already include similar
aspects.

We define an energy term β to measure the spatial variance
as

β =
M∑

i=2

M∑
j=2

Cij . (3)

The energy term does not contain the dc coefficients. In
other words, the energy is measured in terms of the total
magnitude of the ac coefficients. There is a strong correlation
between the energy term and the accuracy of the estimation
of the true motion. A block matching-based method often
estimates incorrect vectors if the macroblock has smooth
texture, and therefore a small β value. Higher β values point
out block to be on a segment boundary.

In addition to features computed from the DCT coeffi-
cients, we include an aggregated motion information that is
extracted using all the P-frames in the GOP. This aggregated
motion information represents vertical and horizontal flow
a = [axt

mn, ayt
mn]T of the corresponding block. We define

the feature vector f of the block

f(t, m, n) :
[
CY

00 CU
00 CV

00 CY
x∗ CY

y∗ β ax ay
]

t,m,n
. (4)

Feature vectors form the FT structure that is much smaller
in size than its raw domain counterpart, which does not even
contain any explicit motion information. For instance, a GOP
of 15 consecutive frames of 352 × 288 color video occupies
352 × 288 × 15 × 3 pixels in raw domain, whereas the
corresponding FT data has only 44 × 36 × 8 components,
which is equal to a reduction factor of 360:1. This shows
the compactness of the FT data. Constructing FT data takes
1–2 ms for a GOP.

C. Aggregated Motion

In the case of motion estimation error for a P-frame block
being high, the MPEG encoder marks it as intra-coded block
and skips the assignment of MV to this block. Such intra-
coded blocks occur quite frequently in the compressed bit
stream whenever there is large motion in the scene. To find a
regular motion field, we first interpolate a motion vector for
each intra-coded block within its immediate local neighbor-
hood. To minimize marginal extremities of the motion field,
we convolve the regular field with a Gaussian filter. Since this
filtering is blind, there is a tradeoff between removing extrem-
ities and keeping original boundaries. Any blind filter smears
the boundaries; on the other hand, not removing the extremities
causes over segmentation. We empirically determined that a
3× 3 Gaussian-shaped kernel gives acceptable results for the
sequences we tested.

Another problem of integrating the motion information into
the feature vector is that the MVs of P-frames are back-
predicted. For an I-frame and consecutive P-frame pair, only
the blocks in the P-frame have their motion vectors that point
the most similar placements in the I-frame. In other words,
MVs of I-frame blocks do not readily exist.

To find the I-frame forward MVs, it is possible to accumu-
late motion or use a dense aggregated motion field. The first
approach is illustrated in Fig. 4. In [15], motion accumulation
is achieved by forward tracking of the reversed macroblock
resolution MVs from I-frame to last P-frame. At every frame,
the position of macroblock is updated by the corresponding
MV. However, such a tracking either requires the quantiza-
tion of the MVs in a coarse macroblock-size resolution, or
recomputing the MV of the destination macroblock. Since the
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Fig. 4. (a) One P-frame motion vector contributing at most four I-frame
macroblocks and (b) forward motion projection exponentially branching out
for more than one P-frames.

Fig. 5. Top: Input I-frame image along with motion vectors of individual
P-frames. Bottom: Aggregated motion vectors for the GOP using forward
projection and motion accumulation.

destination macroblock may not necessarily correspond to an
original grid macroblock, its MV should be interpolated from
the macroblocks that it overlaps. The MVs of the overlapped
I-frame blocks are weighted by the ratio of the overlap to
the total coverage. It is true that for an I-frame block that is
entirely covered by the projected P-frame blocks, this process
is more accurate than another frame that is partially covered.
Besides, the tracking approach can only be applied to the
adjoining frames as the projected motion degrades rapidly
[Fig. 4(b)].

As an alternative approach, we interpolate the filtered MVs
mk

mn of the kth P-frame such that we get a pixel-resolution
dense vector field mk

xy = [mxk
xy, myk

xy]T . We repeat the

interpolation for all the P-frames k = 1, . . . , K of the GOP.
Then, by starting from the last P-frame k = K , we trace back
the movement of the pixel back to first P-frame k = 1. The
MVs m∗xy connect the first and last P-frames. To find them we
first initialize

mx∗Kxy = mx K
xy (5)

my∗Kxy = mx K
xy (6)

and starting from the last P-frame, we iterate the following
equations

mx∗k−1
xy = mx∗kxy + mxk−1

xy (7)

my∗k−1
xy = my∗kxy + myk−1

xy (8)

for k = K − 1, . . . , 2 to assign the pixel-wise aggregated
motion

m∗xy =
[
mx∗1xy + mx∗1xy

]T
. (9)

As a last step, we compute the mean of the aggregated pix-
elwise MVs to determine the aggregated motion information
embedded in the feature vectors

a = [axmn, aymn]T = 1

z

∑
x,y∈blockmn

m∗xy (10)

where z is the number of pixels in a block e.g., z = 64 or
z = 256 depending on the granularity. We give examples of
forward projection and aggregation in Fig. 5.

III. SEGMENTATION

A. Volume Growth

We iteratively expand the volumes one by one within the
FT data starting from the seed points.

These volumes may extend between multiple GOPs. Volume
growth arranges the featurewise similar FT points into a con-
sistent segment. Since expansion is based on local similarity,
the seed points should properly represent their 3-D local
neighborhood. A point that has low local variance is a suitable
candidate. We approximate local variance as the amount of the
energy in temporal and spatial neighborhood

σ 2
t,m,n =

h∑
k=−h

h∑
i=−h

h∑
j=−h

(
βt+k,m+i,n+ j − β̂

)2
(11)

where β̂ is local mean energy, and h ≈ 1 is a small
window kernel size. Again, we drop the scaling constant in the
variance formulation since its ineffective when we determine
the minimum value. We select the current seed point pseed as
the minimum variance in the remaining set of unsegmented
points

pseed = (t, m, n)seed = arg min
(
σ 2

t,m,n

)
. (12)

The seed selection is a relatively intensive task since it
involves searching for the minimum. This process can be
speeded up by performing search in separate GOPs. In other
words, the local minimum in the current GOP is searched and
a volume in 3-D FT data is grown. Then, the next seed is
searched from another GOP.



PORIKLI et al.: COMPRESSED DOMAIN VIDEO OBJECT SEGMENTATION 7

After we select the current seed point, we initialize a volume
descriptor v using the feature vector f(pseed) of the seed point
pseed. We define a set of active boundaries that keeps most
recently added but not processed points to the current volume.
At the first iteration, the active boundaries set has only the seed
point inside.

Then, we compare the adjacent points of the each active
boundary point to the current volume descriptor v. We evaluate
six neighbor points, i.e., (t−1, m, n), (t+1, m, n), (t, m−1, n),
(t, m + 1, n), (t, m, n − 1), and (t, m, n + 1), in all three
dimensions. Inclusion of the points in temporal dimension
enables imposing the assumption that a segment overlaps
between the consecutive GOPs. This assumption may be
violated in case the GOPs have a large number of P-frames.
This implies that the temporal inter-I-frame disparity of two
consecutive GOPs will be large. This effect is particularly
exacerbated in the presence of fast moving objects. In our
observations, the likelihood of having overlaps is statistically
high since MPEG GOPs usually consist of 2 to 15 P-frames.
We compute the distance of a feature vector f of the adjacent
point to the volume descriptor v as

d(v, f) = ω00

∑
l=Y,U,V

∣∣∣vCl
00
− fCl

00

∣∣∣+ ω∗
∑

l=x,y

∣∣∣vCY
l∗
− fCY

l∗

∣∣∣
+ ωβ |vβ − fβ | + ωa |va − fa| (13)

where ω00, ω∗, ωβ , and ωa regulate the contribution of the
DCT coefficients and motion information. Each weight is
inversely proportional to the amount of standard deviation of
the corresponding entity to normalize its magnitude

ωk =
⎛
⎝ ∑

f∈G O P0

(fk − f̂k)

⎞
⎠
−1

(14)

where k indicates a component, e.g., CY
00, β, etc., of the

feature vector, GO P0 is either the first GOP of the data
or multiple GOPs of training data to adapt the weights to
the given content. We denote the mean of the feature vector
by f̂ . Using inverse standard deviation enables giving equal
importance to each component by suppressing the dominant
components that exhibit larger variance. In other words, these
weights are adapted to the given input data.

In case the distance d(v, f) is less than a threshold, which
is set within the range 1±ε, the point is included in the active
boundary and the volume descriptor v is updated by the feature
vector f by alpha blending. We observed that the threshold
determines the precision of the segmentation process and thus
the average size of the volumes. Since we have already scaled
the distance with respect to the standard variation, we can
choose a threshold value that does not require fine tuning.
We select a threshold that prevents from undersegmentation,
and so the above range is sufficient. We overcome the over-
segmentation problem by fusing the similar volumes in the
hierarchical clustering stage. In our experiments, we set the
threshold to 1.

The process of volume growth continues until no active
boundary point remains, i.e., none of the neighbors of the
volume surface points is similar to the volume descriptor. After

a volume is grown, all the points included in the volume are
marked. The seed selection and volume growth process are
iterated until no more point remains in the FT. As a post-
processing stage, the volumes that have negligible size are
removed, and the remaining volumes are inflated to fill up
these removed empty spaces. The seed selection and volume
growth take 0.8–1.5 ms for a GOP on average.

B. Multikernel Mean-Shift Segmentation

Recently, iterative gradient maximization methods, particu-
larly mean-shift filtering, have become popular in color image
segmentation [24], [25]. Here, we extend the previous work
for compressed domain segmentation by integration motion
cues and multiple kernels.

Basically, mean-shift segmentation assigns each point in the
data space to a sink point. By iteratively evaluating the local
gradient direction within a local search region, called kernel,
the mean of the kernel is shifted in the space. The point where
this shift operation moves and converges to the kernel is called
its sink point. Depending on the kernel size, multiple data
points can be assigned to a single sink point.

We use not only a single spatial kernel but also multiple
kernels in different spaces. One additional multidimensional
kernel is defined in DCT coefficient space. Another 2-D kernel
is defined in the MV space. The original spatial kernel is
in three dimensions since the FT data has both spatial and
temporal dimensions. At each mean-shift iteration, we shift
these kernels in the corresponding spaces while updating
the properties, i.e., coverage of the gradient computation,
simultaneously.

Let fi and f∗j be the original and sink points in the spatial,
DCT, and motion domains as feature vector coefficients exist
in all of these domains. For the sake of clarity, we replace the
t, m, n indices by j , where j = 1, . . . , P . The superscripts
s, r, v will denote the spatial, DCT, and motion parts of the
vectors, respectively. Furthermore, let the FT data be already
normalized with the standard deviations of the corresponding
features. To find the sink points, we apply the following
algorithm for each point in the FT:

1) initialize k = 1 and hk = f j ;
2) compute hk+1 = 1

Pk

∑
fi∈K (hk)

fi ; k ← k + 1 until
convergence, i.e., |hk − hk+1| < ε;

3) assign f∗j = (f s
j , hr,v

conv ).

The assignment specifies that the sink point at the spatial
location of f j will have the DCT and motion components of
the point of convergence hconv . The number of points in the
window S(hk) is Pk .

For segmentation, we find the sink points first using the
above algorithm. Then, we identify clusters of sink points by
linking together all f∗j which are closer than a preset value
from each other in the joint domain. Since we assume we
normalized all the coefficients, this value can be set to 0.5.

We observed that using all the DCT coefficients does not
provide stable segmentation results and causes excessive over
segmentation. The described method becomes sensitive to the
parameters when we include the ac components and the energy
term. This is expected considering the fact that the mean shift
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Fig. 6. Affine motion parameters estimated using translational motion as
prior.

will assign a different sink anywhere a point has different ac
coefficients than its neighbors. Thus, we used only the three
DCT coefficients in our reported results.

In the final stage of the mean-shift segmentation, we group
together the points that are assigned to same cluster of
sink points. This group of points constitute a volume. As a
postprocessing step, the small volumes are eliminated and
the adjacent volumes are inflated to regroup the unassigned
points. The described multikernel mean-shift segmentation
takes 3 ∼ 5 ms for a GOP.

IV. HIERARCHICAL CLUSTERING

Segmentation algorithm generates volumes as well as their
attributes and information about how these volumes should be
merged. Since the use of its results is ultimately determined
by the specific application, we generate a partition tree by
hierarchical clustering and leave the selection of the level in
this tree to the application.

After volume growth, we obtain the parts of the FT data that
are consistent in DCT coefficients and translational motion. To
find a more refined motion model, we fit a motion model to
each volume.

A. Motion Model

We estimate affine motion parameters at each GOP of a
volume and then average the set of individual parameters
over all of the GOP layers. In this way, we solve the region
of support problem of motion segmentation by using the
segmented regions of the temporal layers. Motion parameter
estimation is illustrated in Fig. 6.

We model the layerwise motion p → p′ by a set of affine
motion parameters A, b between the points of a volume in one
GOP layer to next layer as

p′ = p +
[

axmn

aymn

]
p
= Ap + b =

[
a1 a2
a3 a4

]
p +

[
bx

by

]
(15)

where b = [bx , by]T is the translational motion. We dropped
the macroblock size multiplier from above for clarity. There
are two possible translational motion: the average of the
motion vectors a = [axmn, aymn]T , and the trajectory dis-
placement. Trajectory is defined as the string of layerwise (i.e.,
GOP-wise) center of the corresponding regions of a volume.
It is calculated by averaging the coordinates of the points

Fig. 7. (a) A frame from Bream, (b) original MPEG motion vectors
interpolated for 8×8 blocks, and (c) motion vectors after parameter estimation.

Fig. 8. Two most similar volumes merged at each iteration of hierarchical
clustering.

belonging to the volume in a GOP. After finding the trajectory,
we use trajectory displacement layers as translational motion.
We observed that using the mean is a more accurate approach
since trajectory of a large background object tends to be zero.

For a region that consists of K points, we rewrite the above
equation as

A [p1 | . . . | pK ] = [p1 + a1 − b | . . . | pK + aK − b]

A(2×2)Q(2×K ) = �(2×K ) (16)

where the only unknown is the matrix A. Since P is an 2×K
matrix, A = �Q−1 is the solution in the least-squares sense
to the overdetermined system of equations. The effective rank
and pseudo inverse is determined from the QR decomposition
with pivoting. This process takes 5–8 ms for a GOP. Sample
MVs after parameter estimation are shown in Fig. 7.

B. Construction of Partition Tree

We cluster the segmented volumes into objects using their
descriptors and motion models as shown in Fig. 8. Clustering
can be done either hierarchically or in a partitional manner.
Hierarchical approach produces a nested series of partitions,
while a partitional approach obtains a single partition of the
data. We adapt a hierarchical clustering technique by merging
the volumes in a fine to coarse manner.

At each iteration of the hierarchical clustering, we merge
the pair having the maximum similar score. We define the
similarity between the volumes as

s(vi , v j ) =
[

1+
∑

t

(
cA|Ait − A j,t | + cb|bi,t − b j,t |

)]−1

(17)
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Fig. 9. Motion, trajectory, and DCT coefficient-based similarity scores of
the merged pairs for sample sequences.

where t is the GOP layers on which both volumes are
visible. The mixture constants are set as cA � cb to take
into account of the fact that a small change in the rotation
and scaling parameters can lead to much greater disparity
than the translation parameters. We update the descriptors,
i.e., the motion parameters of the volumes, accordingly after
each merger. The hierarchical clustering is iterated until two
volumes remain.

At each level of the clustering algorithm, we evaluate
whether the chosen volume pair is a valid merger. We keep
track of the change in the similarity term. The sudden drops
and small values of the similarity score indicate an invalid
merger. We should note that the consistency of this score
depends the definition of the similarity. We observed that
the motion parameter-based similarity scores are robust, i.e.,
they give smooth and monotonically decreasing scores while
providing accurate clustering results as shown in Fig. 9. The
trajectory-based motion similarity score is found to be not as
consistent as the motion parameter metric score since it disre-
gards the rotation and is sensitive to the shape of the object,
e.g., larger objects tend to have less descriptive trajectories
due to the averaging of the positions of its constituent blocks.
Similarly, the DCT coefficient-based similarity causes wrong
merges since it disregards the motion information.

Based on the above observations, we define a divergence
score αL to estimate the optimum number of segments. This
score indicates how the consistency of the motion information
changes after the merge of the selected volumes as

αL =
L∑

l=1

Nlσ
2
a,l (18)

where σ 2
a,l = σ 2

ax,l + σ 2
ay,l is the variance of the aggregated

motion vectors of the volume l. Nl is the number of the
points in the volume. At level L of the partition tree, there
are L volumes. The divergence is computed over all volumes.
Since we use variance of the MVs, the divergence score
corresponds to the total weighted variance of the MVs among
all segments. We used the aggregated MVs instead of the MVs
of the P-frames. Using all P-frame MVs may cause an inflated
variance even though the motion at a P-frame is consistent.

The divergence score yields small values for valid mergers,
and high values for invalid associations. Thus, by evaluating
the minima of the divergence score, we can determine the
correct cluster number automatically.

C. Segmentation of P- and B-Frames

After we obtain the partition tree, we propagate the object
boundaries determined for the I-frames to the P- and B-
frames. We utilize the already computed dense and filtered
MVs mk

xy = [mxk
xy, myk

xy]T of the corresponding P-frames
for this purpose. Let R0 be the region of a volume in I-frame.
The corresponding region in a P-frame is obtained by

Rk+1(x, y) = Rk
(

x + mxk
xy, y + myk

xy

)
. (19)

For block resolution segmentation, we simply assign the
most common label in the block. Labels of the uncovered
blocks are assigned from their neighbors. We preferred to use
the dense vectors instead of the block vectors to improve the
quality of the boundaries.

The labels of the blocks in B-frames are assigned from the
neighboring P-frame labels as no B-frame residual information
is decoded in the parsing stage. To properly segment B-
frames, the B-frame block labels should be estimated from
the neighboring frames using the corresponding forward and
backward MVs.

V. EXPERIMENTS

For our experiments, we used video shots from standard
test sequences with varying number of GOPs ranging from 1
to 40, and with different number of P-frames from 1 (IPIP..)
to 15 (IBPBP..). We constructed the FT data structure using
the 12 GOPs that contain one I-frame, four P-frames, and
three B-frames. This syntax is a common configuration and
corresponds to a synchronous segmentation of 96 frames of
the original raw video. The pixel resolution of the raw data
was 352×288, and block resolution in luminance was 44×36.

In addition to standard configuration, we tested constructing
the FT data with different number of P-frames, e.g., employing
only the first P-frame. In other words, motion aggregation had
only one stage. We observed that the inclusion of the following
P-frames increases the computational load as expected; how-
ever, it does not necessarily improve the segmentation results.

We set the volume growth threshold to 1 in all tests.
As we explained before, any threshold value that prevents
undersegmentation would suffice for our purpose since the
clustering stage is designed to merge oversegmented volumes.

We tested different variance-based weights ω00, ω∗, ωβ ,
and ωa , when we computed the distance between the volume
descriptor and the candidate feature vectors. We set certain
weights to zero for the volume growth using DCT coefficients
(ωβ = ωa = 0), dc values (ω∗ = ωβ = ωa = 0, and
MVs (ω00 = ω∗ = ωβ = 0). We observed that higher
values of the DCT distance provide more accurate segmen-
tation results in case of the slow motion, e.g., for Akiyo
and other head-and-shoulder sequences. We verified that the
motion information provides more discriminating information
for the sequences that contain fast moving objects. In favor of
interlayer expansion, we locally adapted the feature weights
depending on whether the candidate point is an interlayer point
or an intralayer point. However, we noticed occasional volume
leakage problems especially around the inaccurate MVs. As a
postprocessing step, we removed tiny volumes.
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Fig. 10. Divergence score αL for two sequences. Arrows indicate the
optimum object number before an invalid merge.

Fig. 11. Weighted average error rates for different combinations of features
in segmentation and hierarchical clustering. Table shows the average errors for
six sequences. Individual errors are weighted according to the GOP number
of the corresponding sequence.

Figs. 12–17 show the initial segmentation results (marked
as initial) for an I-frame of the first GOP layer for each
test sequence after the volume growth stage. As can be
seen, the objects that have similar DCT coefficients and MVs
are accurately detected even at the coarse block resolution,
which shows the effectiveness of the compressed domain
segmentation process.

Fig. 12 shows an I-frame, the initial segmentation and the
partition tree for the Akiyo sequence, where the divergence
score indicates that the optimum number of clusters is 2. These
objects are segmented as the head and the background, since
the head of the speaker has the most discriminating movement
in that group of GOPs.

Fig. 13 presents the segmentation results for the Lab
sequence. The divergence score suddenly changes at the clus-
tering level 2, which shows there should be two clusters, i.e.,
person and background.

Fig. 14 gives results for the Bream sequence. We observed
that the divergence score gives the optimum at the clustering
level 3 due to the fact that the upper fin of the fish has
different movements. Ideally, the optimum number should be
2; however, not all regions of the fish has the same motion.

We show an I-frame from the Children sequence and its
partition tree in Fig. 15. The computed divergence score
changes suddenly after the clustering level 3, which indicates
that optimum segments are the moving head of the boy on the
left, the body of the boy on the right, and the background.

The segmentation results for a GOP of Traffic is given in
Fig. 16. There are three distinct objects: vehicle on the left,
vehicle on the right, and the stationary background. As shown

Fig. 12. I-frame from Akiyo, and the segmentation results at the correspond-
ing clustering levels including the background. Both divergence score and
similarity-based metrics indicate that the optimum number of clusters is 2.

Fig. 13. I-frame from Lab, and the segmentation results at the corresponding
clustering levels. Validity metric jumped at level 2, which indicates there
should be two clusters, i.e., person and background. Different volumes are
randomly colored.

in Fig. 10, the divergence score for this video jumped when
we tried to merge the three remaining objects. This indicates
that the merger is invalid, and objects should not be merged
any more.

Similarly, for the Table Tennis sequence the divergence
score estimates the optimum number of clusters as 2—the
ball and the background. This is justifiable since only the ball
moves in that GOP. The final partition tree contains the table
and the arm on that layer, as shown in Fig. 17.

Overall, we observed that the total segment variance sud-
denly increases in case of an invalid merger. These results
confirm the motion existing in the scene, and proves the
effectiveness of the proposed algorithm even if the objects
are small in comparison to the frame size.

As seen from these results, the motion parameter-based
similarity measure can detect the small motion variances.
Although a fast moving single small object may invalidate
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Fig. 14. I-frame from Bream, and the segmentation results at the corre-
sponding clustering levels. Divergence score indicates that the segmentation
is optimum at the level 3 due to the fact that the upper fin of the fish has a
different movement.

Fig. 15. I-frame from Children, and the segmentation results at the corre-
sponding clustering levels. Divergence score indicates the optimum number
of clusters should be 3; moving head of the boy on the left, body of the boy
on the right, and background. However, our system enables the end user to
choose any level in the object tree.

the overlapping regions assumption and appear as separate
objects in different layers, we observed that for the mod-
erate motion sequences the trajectories are continuous and
segmented region boundaries are accurate. We also con-
cluded that the segmentation process is not sensitive to
the minor threshold perturbations, which gives additional
flexibility.

We have also conducted experiments to test the performance
of multikernel segmentation using mean shift. For an objective
analysis, we have used the same experimental setup and video
sequences as explained previously. For the sake of qualitative
comparison, we give the detailed results of incremental seg-
mentation steps involved for a subset of algorithms in Fig. 18
for Traffic, and in Fig. 19 for Table Tennis sequences.

We measured the accuracy of the various combinations
of FT segmentation on different feature spaces using either

Fig. 16. I-frame from Traffic, and the segmentation results at the corre-
sponding clustering levels. The validity score indicates the optimum segment
number should be 3 including the background.

Fig. 17. I-frame from Table Tennis, and the segmentation results at the
corresponding clustering levels. The Divergence score for this sequence
jumped at level 2. There are four distinct motion in this GOP; ball, arm,
table (due to camera motion), and wall (static background). We observed that
the hand and arm have similar motion vectors. The spurious segment on the
lower right has inaccurate motion vectors. The volume growth process could
not blend it into other regions since its DCT coefficients were also significantly
different. On the other hand, the white ball has the largest motion vector, and
thus it stayed as a distinct object until to the final level.

volume growth or mean shift:

1) segmentation by mean shift on dc values; hierarchical
clustering by MVs;

2) segmentation by mean shift on dc values; clustering by
DCT and MVs;

3) segmentation by mean shift on MVs; clustering by DCT
coefficients;

4) segmentation by mean shift on MVs; clustering by DCT
coefficients and motion vectors;

5) segmentation by mean shift on dc values and MVs;
clustering by DCT coefficients and MVs;

6) segmentation by volume growth on DCT coefficients;
clustering by MVs;

7) segmentation by volume growth on DCT coefficients;
clustering by DCT coefficients and MVs;
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Fig. 18. Traffic sequence. Column 1: Mean-shift segmentation using
DCT coefficients, hierarchical clustering using motion vectors. Column 2:
Mean-shift segmentation using motion, hierarchical clustering using DCT.
Column 3: Mean-shift segmentation using DCT and motion vectors, hier-
archical clustering using DCT and motion. Column 4: Region growth using
DCT, hierarchical clustering using motion. Column 5: Region growth using
motion, hierarchical clustering using DCT. Column 6: Region growth using
DCT and motion, hierarchical clustering using DCT and motion.

Fig. 19. Table Tennis sequence. Column 1: Mean-shift segmentation using
DCT coefficients, hierarchical clustering using motion vectors. Column 2:
Mean-shift segmentation using motion, hierarchical clustering using DCT.
Column 3: Mean-shift segmentation using DCT and motion vectors, hier-
archical clustering using DCT and motion. Column 4: Region growth using
DCT, hierarchical clustering using motion. Column 5: Region growth using
motion, hierarchical clustering using DCT. Column 6: Region growth using
DCT and motion, hierarchical clustering using DCT and motion.

8) segmentation by volume growth on MVs; clustering by
DCT coefficients;

9) segmentation by volume growth on MVs; clustering by
DCT coefficients and MVs;

10) segmentation by volume growth on DCT coefficients and
MVs; clustering by DCT coefficients and MVs.

These algorithms are applied on DCT coefficients or MVs
for segmentation. Also, the hierarchical clustering for region
merging is operated on either feature space, i.e., DCT coeffi-
cients and MVs. This way, we have generated a matrix of
various segmentation techniques. The results on this dense
matrix of algorithms are reported in Fig. 11.

We manually labeled object boundaries for several GOPs
from various sequences and computed the segmentation error,
which is defined as the amount of mismatch between the labels
in ground truth and segmentation result. We assumed that an
object in the segmentation results belongs to the object that
has the maximum overlap in the ground-truth data. Note that
segmentation task is application specific; a universal ground
truth does not exist except for very simple examples. This is
the main motivation to use a partition tree to let the end user
to assess the performance.

Fig. 11 shows the average normalized mean-square errors
between binary mask at final (optimal) level of the clustering
stage. We weighted errors across the sequences with respect

TABLE I

AVERAGE COMPUTATION TIMES (352×288 VIDEO; 44×36 BLOCKS)

Parsing 0.5 ms

FT generation 0.7 ms

Seed selection and volume growing 2 ms

Multikernel mean shift 3 ms

Motion parameter estimation 6 ms

Hierarchical clustering 3 ms

to the number of GOPs and normalized them by assuming
that the worst error is 100. It can be inferred from the table
that both the presented segmentation methods produce similar
results for the same configurations. Using DCT terms in
FT segmentation and MV in the consecutive clustering, on
average, gives better results.

It is also seen from that table that dividing the segmentation
into two separate tasks (FT segmentation and hierarchical
clustering) generates more accurate object boundaries than
segmenting into a joint space (mean shift DCT + MV and
volume growing DCT+MV).

The proposed algorithm is faster than the real-time one.
The total segmentation time including the MPEG parsing is
approximately 12 ms for a GOP on a P4 3-GHz platform.
The load of each stage is shown in Table I. These numbers
may vary depending on the number of initial objects. Most
computational load is on the motion model estimation stage.
Favorably, the speed is not influenced by the complexity of
the motion. Since a GOP consists of eight frames in the
above tests, the compressed domain segmentation achieves
an average of average 1.5 ms processing speed per frame,
which is significantly faster than any raw domain segmentation
method.

A. Limitations

Compressed video MVs are often computed by minimiz-
ing a cross-correlation error. They map to the most similar
underlying patterns in the reference frames, not necessarily to
the actual motion of the objects. Therefore, performance of
any compressed domain algorithm is limited to the accuracy
of the MPEG motion vectors. For sequences that contain fast
moving objects, this issue becomes more apparent, as most
encoders automatically switch into the intra-frame coding for
fast moving blocks where block motion estimation fails to
provide a valid match.

Volume growth inherently imposes objects to have over-
lapping regions between the consecutive GOPs. Otherwise,
a single object may be divided into multiple objects along
the temporal axis. Still, tracking of an object across multiple
GOPs is not required for most applications.

Compressed domain segmentation generates low-resolution
segmentation masks, which are insufficient for shape-based
detection and retrieval tasks. To improve the spatial resolution,
a raw domain-boundary refinement should be applied.

VI. CONCLUSION

This paper has presented a compressed domain segmen-
tation method that takes full advantage of the inter-frame
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motion and intra-frame spatial frequency information already
embedded in MPEG encoded video. The primary contribu-
tion is a volumetric segmentation and an iterative clustering-
based scheme for generation of a hierarchical partition tree to
select the most desired segmentation based on the application
specifications.

Our tests revealed that a slight oversegmentation using DCT
coefficients followed by aggregated motion-based clustering
produces more accurate boundaries than single-stage joint
segmentation. This agrees with our intuition; the volume
boundaries obtained from DCT coefficients fits into the under-
lying video more closely than the motion boundaries, which
tend to be deformed and erroneous since the original MVs are
generated to optimize the compression efficiency.

We observed that using all of the DCT coefficients do not
necessarily provide a stable segmentation. For instance, mean-
shift segmentation becomes sensitive when we include the
ac components and the energy term. Mean shift assigns a
different sink, thereby causing severe oversegmentation, to any
point that has different coefficients than its neighbors if the
kernel size is not correct. For volume growth, this problems
is partially alleviated, as the contributions of the coefficients
are adjusted according to their variance.

In addition, we show that imposing the segmentation on
the compact FT data structure constructed from the parsed
video enables superior processing speeds as fast as 1.5 ms
per frame, which makes the method a perfect preprocessing
stage to provide initial segmentation masks for full-resolution
uncompressed video segmentation.

Another contribution is the automatic estimation of the
number of objects in the scene using a novel divergence
score, which indicates how the consistency of the motion
information changes after the merger of the selected volumes.
We observed that the motion parameter-based similarity score
exhibits robust and consistent responses while producing accu-
rate clustering results unlike the trajectory-based similarity
score, which is sensitive to the shape and rotational motion
of objects.
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